

AIME , AMC 12 Problems on Logarithms 2020 to 2023

Points A and B lie on the graph of $y = \log_2 x$. The midpoint of \overline{AB} is $(6, 2)$. What is the positive difference between the x -coordinates of A and B ?

(A) $2\sqrt{11}$ (B) $4\sqrt{3}$ (C) 8 (D) $4\sqrt{5}$ (E) 9

A right rectangular prism whose surface area and volume are numerically equal has edge lengths $\log_2 x$, $\log_3 x$, and $\log_4 x$. What is x ?

(A) $2\sqrt{6}$ (B) $6\sqrt{6}$ (C) 24 (D) 48 (E) 576

For how many integers n does the expression

$$\sqrt{\frac{\log(n^2) - (\log n)^2}{\log n - 3}}$$

represent a real number, where \log denotes the base 10 logarithm?

(A) 900 (B) 2 (C) 902 (D) 2 (E) 901

What is the value of

$$(\log 5)^3 + (\log 20)^3 + (\log 8)(\log 0.25)$$

where \log denotes the base-ten logarithm?

(A) $\frac{3}{2}$ (B) $\frac{7}{4}$ (C) 2 (D) $\frac{9}{4}$ (E) 3

What is the value of

$$\frac{\log_2 80}{\log_{40} 2} - \frac{\log_2 160}{\log_{20} 2}?$$

(A) 0 (B) 1 (C) $\frac{5}{4}$ (D) 2 (E) $\log_2 5$

What is the value of

$$\left(\sum_{k=1}^{20} \log_{5^k} 3^{k^2} \right) \cdot \left(\sum_{k=1}^{100} \log_{9^k} 25^k \right) ?$$

(A) 21 (B) $100 \log_5 3$ (C) $200 \log_3 5$ (D) 2,200 (E) 21,000

What is the product of all the solutions to the equation

$$\log_{7x} 2023 \cdot \log_{289x} 2023 = \log_{2023x} 2023?$$

(A) $(\log_{2023} 7 \cdot \log_{2023} 289)^2$ (B) $\log_{2023} 7 \cdot \log_{2023} 289$ (C) 1
(D) $\log_7 2023 \cdot \log_{289} 2023$ (E) $(\log_7 2023 \cdot \log_{289} 2023)^2$

Positive real numbers $b \neq 1$ and n satisfy the equations

$$\sqrt{\log_b n} = \log_b \sqrt{n} \quad \text{and} \quad b \cdot \log_b n = \log_b(bn).$$

The value of n is $\frac{j}{k}$, where j and k are relatively prime positive integers. Find $j + k$.

There is a positive real number x not equal to either $\frac{1}{20}$ or $\frac{1}{2}$ such that

$$\log_{20x}(22x) = \log_{2x}(202x).$$

The value $\log_{20x}(22x)$ can be written as $\log_{10}(\frac{m}{n})$, where m and n are relatively prime positive integers. Find $m + n$.

There is a unique positive real number x such that the three numbers $\log_8(2x)$, $\log_4 x$, and $\log_2 x$, in that order, form a geometric progression with positive common ratio. The number x can be written as $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m + n$.

The value of x that satisfies $\log_{2^x} 3^{20} = \log_{2^{x+3}} 3^{2020}$ can be written as $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m + n$.

Determine all real values of x for which

$$\sqrt{\log_2 x \cdot \log_2(4x) + 1} + \sqrt{\log_2 x \cdot \log_2\left(\frac{x}{64}\right) + 9} = 4$$

(b) Suppose that $f(a) = 2a^2 - 3a + 1$ for all real numbers a and $g(b) = \log_{\frac{1}{2}} b$ for all $b > 0$. Determine all θ with $0 \leq \theta \leq 2\pi$ for which $f(g(\sin \theta)) = 0$.